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Abstract

Ab initio MP2 and density functional quantum chemistry calculations are used to explore geometries and vibra-
tional properties ofN-methylacetamide and of the alanine dipeptide with backbone angles characteristic of helix
and sheet regions in proteins. The results are used to explore one-bond direct dipolar couplings for the N–H, Cα–
Hα, C′–N, and Cα–C′ bonds, as well as for the two-bond C′–H interaction. Vibrational averaging affects these
dipolar couplings, and these effects can be expressed as effective bond lengths that are 0.5–3% larger than the true
bond lengths; bending and torsion vibrations have a bigger influence on the effective coupling than do stretching
vibrations. Because of zero-point motion, these effects are important even at low temperature. Hydrogen bonding
interactions at the amide group also increase the N-H effective bond length. Although vibrational contributions to
effective bond lengths are small, they can have a significant influence on the extraction of order parameters from
relaxation data, and a knowledge of relative bond lengths is needed when several types of dipolar couplings are to
be simultaneously used for refinement. The present computational results are compared to both solid- and liquid-
state NMR experiments. The analysis suggests that secondary structural elements in many proteins may be more
rigid than is commonly thought.

Introduction

Spin-spin interactions between directly bonded nu-
clei can provide important information about protein
structure and dynamics. Direct (through-space) dipo-
lar couplings can be extracted from solid-state mea-
surements (Roberts et al., 1987) or from studies on
partially oriented liquid samples (Tolman et al., 1995;
Tjandra et al., 1996; Tjandra and Bax, 1997; Preste-
gard, 1998). For proteins, the coupling strengths for a
particular type of bond can show large variations from
one residue to another that reflect both the mean bond
orientation and angular fluctuations about this mean.

Information about dipolar couplings can also
be extracted from liquid state relaxation studies
(Abragam, 1961; Brüschweiler and Case, 1994a;
Torchia, 1996). For certain nuclei, spin relaxation
is dominated by dipolar interactions with directly
bonded spins, and variations in relaxation times can
be ascribed to variations in angular fluctuations, e.g.

through order parameter analysis or spectral den-
sity mapping (Palmer, 1997; Fushman and Cowburn,
1998; Kay, 1998). The interpretation of these mea-
surements is greatly facilitated by the fact that bond
distances are nearly constant, and are approximately
known for each type of bond, so that variations in
dipolar splittings or relaxation parameters from one
residue to another can be largely ascribed to changes
in the mean angular orientation or to fluctuations about
this mean. A typical analysis compares the observed
results to those to be expected from a rigid mole-
cule with fixed internal structure. For example, for
short internal relaxation times, the ‘Lipari–Szabo’ or-
der parameterS2 is the ratio of the dipolar (cross-)
relaxation rate in the real system to that of a hypo-
thetical rigid system with the same mean structure
(Lipari and Szabo, 1982; Yip and Case, 1991). Use of
a rigid-molecular reference state is adequate for many
purposes, but it must be recognized that, even at the
lowest temperatures, zero-point vibrational motion ex-
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ists that can affect dipolar interactions. I explore here
a model in which the reference system, rather than be-
ing classically rigid, includes this zero-point motion,
so that deviations from the reference model reflect
only thermally activatedmotions. This change can
be accommodated into standard analyses by replacing
the actual mean bond length with an effective value
that reflects the appropriate averaging over vibrational
motion (Henry and Szabo, 1985; Ishii et al., 1997).
Here I use quantum chemical calculations on peptide
and dipeptide model compounds to obtain estimates
for these effective bond lengths for the N–H, Cα–Hα,
C′–N and Cα–C′ bonds that are typically studied in
proteins. Models for hydrogen bonding and for back-
bone torsion angle variations are explored to obtain
estimates of the extent to which both the actual and the
effective bond lengths depend upon the environment.

In some circumstances, the choice of a reference
system is principally a matter of convenience: chang-
ing from a rigid reference system to one containing
local bending and stretching vibrations will just scale
order parameters of a particular type (such as the N–
H group in a peptide) by a constant factor. This may
have little effect on analyses of experimental relax-
ation data that concentrate on the differences among
residues. The choice of reference system becomes
important for quantitative considerations (such as for
comparisons to molecular dynamics simulations), and
can be crucial for comparisons of data from differ-
ent pairs of nuclei (such as simultaneous analysis of
13Cα–1Hα and15N–1H data). In this latter case, even
small uncertainties in the absolute value of effective
bond lengths can have a significant effect on geometric
and fluctuation analyses. Furthermore, a quantitative
analysis of the contributions of various types of mo-
tion to observed dipolar coupling strengths may help
to clarify the conclusions that may be drawn from such
measurements.

Methods

Two principal model systems were used here. The first
isN-methylacetamide, which is a model for an isolated
peptide group. The isolated molecule was geometry
optimized with three levels of quantum theory. The
first level employed MP2 theory and a 6-31G∗∗ ba-
sis set, and used the Gaussian 94 program (Frisch
et al., 1995). Since correlation contributions increase
with increasing bond lengths, the MP2 model gives
bond lengths that are 0.01 to 0.02 Å longer than

Hartree–Fock theory, and which should be more accu-
rate. Approximate energy profiles for the N–H bond
stretch were obtained by changing the N–H bond
length in the MP2/6-31G∗∗ optimized structure, and
constructing a curve from single point MP2/6-31G∗∗
energies. The second quantum level used the B3LYP
density functional model (Kohn et al., 1996) with the
6-31G∗∗ basis set, using version 3.5 of the Jaguar pro-
gram (Schödinger, Inc., Portland, OR, 1998). Normal
modes were computed from a second derivative matrix
constructed from finite difference calculations from
first derivatives. A third quantum level added a contin-
uum solvent term to the B3LYP/6-31G∗∗ calculations,
with an external dielectric of 80.4, employing a bound-
ary element method to carry out the self-consistent
reaction field model, as described elsewhere (Cortis
et al., 1996).

Since peptide groups in proteins are generally in-
volved in hydrogen bonding interactions, two models
for this were explored. The first used two water mole-
cules, one hydrogen bonding to the N–H group and
one to the C=O group. Hydrogen bond lengths were
constrained to distances from 1.8 to 2.5 Å (in steps
of 0.1 Å) for both groups, and the remaining degrees
of freedom were geometry optimized at the MP2/6-
31G∗∗ level. A second hydrogen bond model used a
single acetate ion (to mimic the formation of a zwitter-
ionic hydrogen bond); again, the N–H· · ·O hydrogen
bond length was varied from 1.8 to 2.5 Å, and the re-
maining degrees of freedom were geometry optimized.
Since the point of these studies was to estimate the ef-
fects of hydrogen bonds on NMR properties, I did not
attempt to determine reliable energetics and ignored
basis set superposition errors.

A second model was the ‘alanine dipeptide’ (N-
acetyl, N ′-methylalanineamide), which has been
widely studied as a model for peptide conforma-
tions involving the φ and 9 backbone angles. I
looked mostly at a ‘sheet’ conformation, which is
an unrestrained local minimum at the MP2/6-31G∗∗
level with (φ,9) = (−156◦,165◦). As with N-
methylacetamide, approximate energy versus bond
length profiles were computed by changing the Cα–
Hα, Cα–C′or C′–N bond lengths and re-computing
MP2/6-31G∗∗ single-point energies. Also in line with
the N-methylacetamide calculations, normal modes
were computed at the B3LYP/6-31G∗∗ level, both
with and without a continuum solvent self-consistent
reaction field term.

For comparison, I also looked at the alanine dipep-
tide with backbone angles characteristic of anα-helix.
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Since there is no local minimum in this region on the
gas-phase surface (Brooks and Case, 1993), I con-
strained theφ and9 angles to−60◦, and optimized
the remaining degrees of freedom at the MP2/6-31G∗∗
level.

The effects of normal mode motion on dipolar
coupling strengths were computed using the Amber5
programs (Case et al., 1997), employing a formal-
ism outlined below and described in detail previously
(Brüschweiler and Case, 1994b). The Amber pro-
grams were modified to read in normal mode fre-
quencies and eigenvectors as output from the Jaguar
program. For comparison, normal modes forN-
methylacetamide were also computed using the Am-
ber 95 force field (Cornell et al., 1995), and used
to compute motional effects on dipolar coupling
strengths.

Results

The effects of vibrational motion on dipolar coupling
strengths have been considered by Henry and Szabo
(1985), whose notation I follow here. In this analysis,
the vibrationally averaged dipolar coupling strength is
related to an effective distance:

ωeff ≡ h̄γiγS/r3
eff (1)

where theγs are nuclear gyromagnetic ratios, andreff
differs from the optimum bond length R (at the bottom
of the potential well) in a way that reflects the effects
of vibrational averaging on dipolar coupling. Using a
Taylor series expansion of vibrational motion, one can
write (Henry and Szabo, 1985):

reff = R +
[
<1z> −2<12

z> /R
]

+
{
(<12

x> + <12
y>)/2R

}
(2)

Here we are in a coordinate frame where thez axis
is along the bond vector, and1i (i = x, y, z) is the
Cartesian deviation from the optimum bond vector.
The < > brackets indicate a vibrational averaging.
The terms in square brackets arise from vibrational
averaging of the internuclear distance (i.e. they cor-
respond to< r−3>−1/3) whereas the terms in curly
brackets arise from the averaging of the orientation
of the internuclear vector (as might typically be rep-
resented by anS2 order parameter). The vibrational
averaging related to distances (the term in square
brackets) can be further broken down into an anhar-
monic contribution (<1z>) that is generally positive,

since the vibrationally averaged length is longer than
the bottom-of-well distance, and a harmonic contribu-
tion (−2 <12

z > /R) that arises from the fact that
averagingr−3 weights the small distances more than
larger ones. It is worth emphasizing thatreff is not
simply < r−3>−1/3, but that it includes as well the
orientational averaging terms given by the final terms
in Equation 2, and that these latter terms typically have
a bigger effect onreff than do the terms that involve
distance averages alone.

Because of the large frequency mismatch between
stretching and bending vibrations, the averages in
Equation 2 can be approximately carried out in two
steps, using an (anharmonic) one-dimensional po-
tential for bond stretching and a conventional 3N-
dimensional harmonic normal mode analysis for the
bending contributions. It is possible to consider more
complex models in which stretching and bending are
coupled to one another (Ishii et al., 1997), but these
will not be pursued here.

The averaging over the bond-stretching motion
may be carried out by fitting quantum mechanical
MP2/6-31G∗∗ energies to a cubic potential:

E = E0+ 1

2
k(r − R)2 + (1/6)frrr (r − R)3 (3)

whereE0, k, frrr andRare adjustable parameters. The
parameterk is the conventional force constant andfrrr

is the cubic anharmonic force constant for the bond of
interest. The mean-square fluctuation in bond length is
then (McQuarrie, 1976):

< 1z2 >= h̄

2µω
coth

(
h̄ω

2kBT

)
(4)

whereµ is the reduced mass,ω = (k/µ)
1
2 is the vi-

brational frequency,kB is the Boltzmann constant and
T the absolute temperature. The cubic term provides a
coupling between normal modes. Using first order per-
turbation theory, the increase in average bond length
can be written as (Henry and Szabo, 1985):

< 1z >= −
(
frrr

2µω2

)
< 1z2 > (5)

Figure 1 shows MP2/6-31G∗∗ energies as a func-
tion of bond length for an isolated amide and for
two models of hydrogen bonding. It is worth not-
ing that the zero-point vibrational energy (h̄ω/2) is
about 5 kcal/mol, so that a significant range of bond
lengths is sampled by the ground-state vibrational
wavefunction. Hydrogen bonding to water increases
the optimal bond length (i.e. the value at the bottom
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Figure 1. MP2/6-31G∗∗ energy versus bond length forN-methyl-
acetamide and its complexes with two waters, or with an acetate
anion.

of the well) by about 0.004 Å. This is in accord with
earlier calculations by Guo and Karplus (1992), who
studied a variety of hydrogen bonding environments
and found N–H bond length increases upon formation
of a hydrogen bond ranging from 0.001 to 0.009 Å.
As Figure 1 shows, interactions with an anionic ac-
ceptor can lead to much larger bond length increases,
although these sorts of interactions are rare in proteins.
It is also worth noting that N–H bond lengths at the
MP2 level are about 0.015 Å longer than those ob-
tained from Hartree–Fock theory (Guo and Karplus,
1992). The vibrationally averaged N–H bond length
(the sum ofr0 and1z in Table 2, e.g. 1.025 Å for
NMA/wat2) is quite close to the values of 1.020 and
1.024 Å determined from neutron diffraction results
on glycylglycine-H2O (Kvick et al., 1977), suggesting
that the present MP2 results are at a useful level of
accuracy.

Table 1 gives the Taylor series expansions for var-
ious bonds in model compounds, and Table 2 shows
the corresponding contributions toreff. The general
pattern is the same for all bonds: anharmonic contribu-
tions increasereff, by roughly 0.015 for N–H or C–H
bonds and by much smaller amounts (0.001–0.002 Å)
for bonds not involving hydrogen. The harmonic cor-
rection, which reflects the fact thatr−3 averaging
weights smaller distances more heavily than larger
ones, cancels much but not all of the anharmonic
correction.

Table 1. Taylor series expansion for energy versus bond length

Molecule Bond R k frrr

NMA H–N 1.0061 1152.0 −6798.6

NMA-wat H–N 1.0096 1109.8 −6977.2

NMA-acetate H–N 1.0419 773.7 −6541.7

Aladip(α) Hα-Cα 1.0905 854.0 −5309.9

Aladip(β) Hα-Cα 1.0922 842.4 −5309.7

Aladip(β) C′–Cα 1.5256 1601.1 −2561.5

Aladip(β) C′–N 1.3582 1772.5 −6348.0

NMA is N-methylacetamide; aladip is the alanine dipeptide
(see text for details.) ParametersR, k andfrrr are defined in
Equation 3, and were fit to MP2/6-31G∗∗ energies.R is given
in Å, k in kcal/mol Å2 andfrrr in kcal/mol Å3.

The librational terms in Equation 1 can be esti-
mated from conventional normal mode averages. The
normal mode average of a scalar functionf(x) depend-
ing on the 3N-dimensional position vectorx, where
N is the number of atoms in a system with an equi-
librium conformationx0, is, to a second order Taylor
expansion,

<f (x)>= f (x0)

+ 1
2

3N∑
i

∑
k,l

∂2f (x0)
∂xk∂xl

(mkml)
−1/2QikQilσ

2
i

(6)

Heremk is the mass of atomk andQik is thek-th com-
ponent of thei-th normal mode. The thermal averages
of the second momentsσ2

i of the amplitude distrib-
utions of the harmonic oscillators can be calculated
for both classical and quantum statistics (McQuarrie,
1976):

σ2
i,class= kT/ω2

i (7)

σ2
i,qm=

h̄

2ωi
coth

h̄ωi

2kBT
(8)

The two statistics coincide in the limits of low fre-
quency or high temperature. For biomolecules, the
most important difference is generally that higher fre-
quency modes will have little amplitude in classical
statistics but have non-negligible zero-point motion
in quantum statistics. Henry and Szabo (1985) have
shown how to remove the contribution of bond-length
changes in computing the averages in Equation 6, and
I have used that procedure here. The contributions to
reff from angle bending can then be determined from
the final terms of Equation 2. It is often useful to write
these in terms of a corresponding order parameter,
defined such that:

S2/R6 = 1/r6
eff (9)
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Table 2. Effective distances for peptide models

Model Bond r0 1z 1z2 Zero-point Total Ottiger

corr. corr. libration and Bax

NMA N–H 1.006 +0.013 −0.009 +0.029 1.039

NMA(s) N–H 1.008 +0.013a −0.009a +0.025 1.037

NMA/wat2 N–H 1.010 +0.015 −0.009 +0.025a 1.041 1.041

NMA/acet. N–H 1.042 +0.023 −0.011 +0.025a 1.079

Aladip(β) Cα–Hα 1.092 +0.017 −0.010 +0.014 1.113 1.117

Aladip(α) Cα–Hα 1.090 +0.016 −0.010 +0.014a 1.110

Aladip(β) Cα–C′ 1.526 +0.001 −0.002 +0.005 1.530 1.526

Aladip(β) C′–N 1.358 +0.002 −0.002 +0.004 1.362

Aladip(β)(s) C′–N 1.337 +0.002a −0.002a +0.004a 1.341 1.329

NMA(s) C′–H 2.024 − − +0.011 2.035 2.04–2.07

NMA is N-methylacetamide; aladip is the alanine dipeptide (see text for details.) Values marked
‘(s)’ refer to calculations with a continuum solvent interaction, as described in the text. The final
column is from Ottiger and Bax (1998).
aThe value listed is assumed to be the same as for the row above it.

This is just the Lipari–Szabo ‘model-free’ order
parameter when internal motion is fast relative to
overall tumbling.

Table 3 shows librational averages (expressed
as order parameters) for the N–H bond inN-
methylacetamide using a vacuum quantum potential
energy surface, a continuum solvent/quantum surface,
and the Cornell et al. (1995) empirical potential energy
function. For the solvated result, the table also gives
the corresponding contributionsreff. Shown are contri-
butions from each mode (except for the C–H and N–H
stretching modes, whoseS2 values are always with
10−6 of unity), as well as the overall value. These av-
erages were calculated for quantum statistics at T= 0,
i.e. including only zero-point vibrational motion. The
out-of-plane motions and the ‘amide III’ N–H bending
modes contribute the most to the reduction of the dipo-
lar coupling strength. The continuum solvent model
increases these frequencies compared to the gas-phase
result, consistent with an increase in the double-bond
character of the C′–N bond (discussed below), leading
to slightly smaller librational corrections. The Amber
empirical force field has frequencies generally slightly
higher than the density functional results, and hence
slightly smaller librational corrections (i.e. S2 values
that are closer to unity), but differences among the
three models are minor.

Correspondingreff calculations have been carried
out for other bonds of interest in peptides and proteins,
and the resulting values are shown in Table 2. These
corrections are significant (0.014 to 0.029 Å) for C–

H and N–H bonds, and as expected are much smaller
(about 0.005 Å) for bonds not involving hydrogens.

Discussion

Comparison to experiment

The results shown in Table 2 are most directly com-
parable to results reported by Ottiger and Bax (1998),
who measured relative dipolar coupling strengths for
H–N, Cα–N, Cα–Hα, Cα–C′ and C′–N bonds in a par-
tially oriented sample of ubiquitin. Recognizing that
bonds involving heavy atoms should have smaller vi-
brational corrections than those involving hydrogens,
they converted the relative dipolar coupling strengths
to effective bond distances by setting the C′–N dis-
tance to an average X-ray distance of 1.329 Å (Engh
and Huber, 1991). The resulting values are shown in
the final column of Table 2, and are in excellent agree-
ment with the quantum chemistry values determined
here. The biggest discrepancy is 0.01 Å for the C′–N
bond, which is one of the most difficult to compute
since it is sensitive to the environment. There are two
main Lewis structures for a peptide bond, one with
neutral atoms and a single bond between C′ and N,
and a second with a negative oxygen and a C′–N dou-
ble bond. The latter structure should be stabilized by
a high-dielectric solvent that can stabilize the excess
partial charges on the oxygen and nitrogen atoms. Sta-
bilizing the C′–N double bond form should shorten
its bond length, and this can be clearly seen in the
distances reported in Table 2: the C′–N bond in a
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Table 3. Normal modes and order parameters forN-methylacetamide

Mode Vacuum Solvated Amber94

freq S2 freq S2 103δreff freq S2

60 0.9987 45 0.9998 0.03 51 0.9990

88 0.9947 103 0.9990 0.16 72 0.9995

Peptide torsion 166 0.9944 180 0.9988 0.20 182 0.9987

292 0.9990 297 0.9991 0.15 284 0.9988

434 0.9999 438 0.9988 0.20 439 0.9998

N–H out-of-plane 431 0.8993 489 0.9155 14.89 587 0.9724
Amide IV 623 0.9997 622 0.9997 0.05 587 0.9999

C=O out-of-plane 629 0.9903 639 0.9866 2.25 687 0.9501
874 0.9994 876 0.9992 0.13 800 0.9998

999 0.9990 1010 0.9995 0.08 961 0.9959

1055 1.0000 1054 1.0000 0.00 1025 0.9956

1110 0.9984 1100 0.9985 0.25 1047 0.9995

1157 0.9999 1149 0.9998 0.03 1079 0.9996

1173 0.9967 1164 0.9971 0.48 1080 0.9991

Amide III 1274 0.9894 1294 0.9879 2.03 1204 0.9772
1410 0.9999 1401 0.9998 0.03 1395 0.9994

1446 0.9997 1439 0.9993 0.11 1399 0.9999

1484 1.0000 1466 1.0000 0.00 1403 1.0000

1499 0.9965 1470 0.9981 0.31 1411 1.0000

1508 0.9983 1498 0.9981 0.31 1419 0.9946

1516 0.9999 1510 0.9999 0.01 1509 0.9999

Amide II 1571 0.9857 1585 0.9856 2.42 1608 0.9969

Amide I 1789 0.9997 1708 0.9996 0.06 1693 0.9988

Total 0.8424 0.8630 24.99 0.8776

‘Vacuum’ and ‘solvated’ modes are from B3LYP/6-31G∗∗ density functional calculations;
‘Amber94’ uses an empirical force field (Cornell et al., 1995). Frequencies are in cm−1.
Computations assume quantum averaging and T= 0. Contributions from individual modes
that are less than 0.99 are indicated in boldface.

dipeptide model is reduced by 0.021 Å (from 1.358 to
1.337) on moving from the gas phase to a continuum
dielectric model. While this is clearly approximately
the correct order of magnitude of bond shortening, the
simple nature of the solvent correction makes it likely
that this bond distance is the most uncertain, both in
absolute and relative terms, of the quantum values re-
ported in Table 2. For all other terms, the quantum
values reported in Table 2 agree with those extracted
from NMR measurements to within 0.005 Å.

There have also been several attempts to extract
effective N–H bond distances from solid-state dipolar
or quadrupolar coupling measurements (Roberts et al.,
1987; Heaton et al., 1989). For crystalline amides,
values between 1.04 and 1.06 Å have been reported,
and it has long been recognized that vibrational av-
eraging makes these effective distances greater than
bond lengths extracted from X-ray or neutron diffrac-
tion studies. Table 2 makes it clear that most of this

discrepancy arises from the influence of zero-point an-
gular vibrations on the effective bond length, and that
measurements and detailed quantum calculations are
in close agreement with each other. There is a small
dependence of the N–H bond length on hydrogen
bonding, with the amide-water model having a bond
length 0.004 Å longer than an isolated amide. For the
less common situation of hydrogen bonding to an an-
ionic acceptor, the hydrogen bond effect can be much
greater, and in fact extremely strong hydrogen bonds
are known where the proton is nearly equally shared
between donor and acceptor. However, for most cases
of interest in proteins, where the H-bond acceptor is
either another amide group or a solvent molecule, the
effect of hydrogen bonding on N–H bond length is
expected to be small.
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Implications for order parameters

It is by now quite a common practice to extract order
parameters or spectral densities from heteronuclear
NMR relaxation data (Palmer, 1997; Fushman and
Cowburn, 1998; Kay, 1998), and to use these val-
ues to make conclusions about the extent of internal
motion in proteins and its potential thermodynamic
consequences (Akke et al., 1993; Yang and Kay, 1996;
Yang et al., 1997). However, it is also well understood
that the magnitudes of the extracted order parameters
depend (among other things) upon assumptions about
effective bond lengths. In this regard, it is useful to
think of an order parameter as a ratio, relating the ob-
served dipolar coupling strength to that which would
be expected from some reference situation (Yip and
Case, 1991). The most common reference is an inter-
nally rigid molecule with the same average structure
as the actual molecule. In this case, it would be ap-
propriate to use theRvalues listed in Table 1 for bond
lengths, since in a truly rigid reference molecule there
is no vibrational averaging. This is in a sense what
is most commonly done, although for historical rea-
sons, an amide N–H bond length of 1.02 Å is often
employed. Using this bond length, values ofS2 for
secondary structural elements in small proteins typi-
cally lie around 0.85, and such a value is often made
more concrete by pointing out that it corresponds to
diffusion in a cone of semi-angle 19◦.

It is not obvious, however, that an internally rigid
reference model is the most appropriate one, since it
is based on classical ideas, and ignores the presence
of zero-point averaging that must be present, even
at absolute zero. If one instead adopts a ‘quantum’
reference for motions that includes such zero-point
averaging (assuming that these intrinsic motions are
applicable to peptides in all environments), it would
be appropriate to usereff values like those given in
Table 2. This will of course lead to derived order
parameters that are much closer to unity.

When only relative order parameters are of im-
portance, then the choice of reference state may be
unimportant (with the understanding that the assump-
tions used should be made clear to promote communi-
cation). In particular, thermodynamic interpretations
generally rely on changes in order parameters, which
should be less sensitive to zero-point motion. How-
ever, the inevitable presence of local zero-point li-
brations can be significant when absolute measures
of mobility are concerned, as when comparisons are
made to molecular dynamics simulations, or where

simple physical pictures (such as diffusion in a cone)
are used to illustrate the meaning of the extracted pa-
rameters. The key point here is thatmany peptide
groups in secondary structural elements of proteins
have little more fast time-scale motion (as measured
by NMR relaxation) than would an isolated peptide
at 0 K. This qualitative picture could be expressed in
two ways: one could use (for N–H bonds) a value of
reff near 1.041 and extractS2 values near unity; or
one could use an effective N–H bond length of 1.02 Å
(as is current practice), but remember to compare the
resulting order parameters to a value near 0.86 repre-
sentative of model peptides even at low temperatures.
The use of 1.04 Å rather than 1.02 Å would change a
‘typical’ N–H order parameter of 0.85 to 0.96; the cor-
responding semi-angle in the diffusion in a cone model
would decrease from 19◦ to 9◦. It is also worth re-
stating the point, known for some time (Brüschweiler,
1992; Palmer and Case, 1992), that quantitative com-
parisons between molecular dynamics simulations and
experiment can be significantly affected by zero-point
vibrations that are not correctly represented in a clas-
sical dynamics simulation. The value of the analysis
reported here lies not only in showing good agree-
ment between quantum chemistry and experiment, but
also in showing explicitly the connections between
the actual bond length and the effective ones that are
reflected in dipolar coupling strengths.
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